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Abstract
We apply the group theory to a (3+1)-dimensional nonlinear system relevant for
the low-frequency electrostatic waves in a nonuniform dusty magnetoplasma.
In correspondence with the generators of the symmetry group allowed by the
system, new types of similarity reductions are performed. Some new exact
solutions are obtained, which can be in the form of solitary waves, shock waves
and periodic waves. Especially, our solutions indicate that the system may have
time-dependent nonlinear shears. Some explicit similarity electrostatic wave
solutions with time periodic nonlinear shears are displayed graphically.

PACS numbers: 52.35.Mw, 02.30.Jr, 05.45.Yv

1. Introduction

During the last decade, there have been a number of theoretical and numerical studies
[1, 2] of numerous waves and coherent nonlinear structures in dusty plasmas composed of the
electrons, ions and charged dust grains. In different situations, different types of waves have
been investigated, such as the dust acoustic and dust ion-acoustic waves [3, 4], magnetoacoustic
waves [5], dust drift waves [6], coupled drift-Alfvén waves [7], dust lattice waves [8] etc. The
above-mentioned waves have been studied by using the multi-fluid equations, supplemented
by the Poisson or Maxwell equations, for dusty plasmas ignoring dust charge perturbation [9].
The reductive perturbation method has been frequently used to derive the Korteweg–de-Vries
(KdV) equation [1], the modified KdV equation, the nonlinear Schrödinger (NLS) equation
[1, 10], which admit localized structures [11, 12].

About a decade ago, Shukla et al [6] derived a pseudo-three-dimensional Charny–
Hasegawa–Mima (C–HM) equation [1] for nonlinear electrostatic drift waves in a warm dusty
magnetoplasma. Shukla and Varma [13] presented a generalized Navier–Stokes equation for
two-dimensional low-frequency (in comparison with the ion gyrofrequency) convective cells
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in a nonuniform cold dusty magnetoplasma. They found that in the presence of immobile
charged dust impurities, the divergence of the plasma current density associated with the
E × B0 plasma flow remains finite, and that this contribution gives rise to a new plasma mode,
which is now referred to as the Shukla–Varma (SV) mode. Both the C–HM and SV equations
admit stationary solutions in the form of a dipole vortex [14, 15] and a vortex street [16].

In the presence of the parallel electron dynamics, the SV equation is then coupled with
an equation that represents the acceleration of magnetic field-aligned electrons by the parallel
electrostatic force. Here we will have a (3+1)-dimensional nonlinear coupled governing
system of equations. In this paper, we will study the (3+1)-dimensional system to find some
exact nonstationary solutions.

The manuscript is organized in the following fashion. In section 2, the derivation of
our (3+1)-dimensional system governing the dynamics of low-frequency electrostatic waves
in a nonuniform dusty magnetoplasma is briefly reviewed. In section 3, the classical Lie
symmetries of the (3+1)-dimensional system are obtained by using the symmetry approach,
and an infinite-dimensional Lie algebra of the symmetries are presented. In section 4,
in correspondence to the generators, four types of (2+1)-dimensional similarity reduction
equations are obtained. In section 5, some exact solutions are obtained from two of the
reduced equations by using the symmetry approach again. Some explicit similarity solutions
with time periodic nonlinear shears are displayed graphically. Section 6 contains the discussion
and conclusions.

2. Basic equations

We consider an electron–ion–dust plasma in an external magnetic field B0ẑ, where B0 is the
magnetic field strength, and ẑ is the unit vector in a Cartesian coordinate system. The charged
dust grains are supposed to be monosized, immobile, and inhomogeneous along the x-axis.
The equilibrium charge neutrality condition reads ni0(x) = ne0(x) + δZdnd0(x), where ns0(x)

is the unperturbed number density of the plasma species s (s equals e for the electrons, i for
the ions and d for the dust grains), and Zd is the number of charges residing on the dust grain
surface. For positively (negatively) charged dust grains, δ = −1(+1).

In the presence of low-frequency (in comparison with the ion gyrofrequency ωci =
eB0/mic, where e is the magnitude of the electron charge, mi is the ion mass, and c is the
speed of light in vacuum) electrostatic field E(= −∇⊥φ, where φ is the wave potential), the
electron and ion velocities in our cold dusty plasma are [1]

ve ≈ c

B0
ẑ × ∇⊥φ + vezẑ, (1)

and

vi ≈ c

B0
ẑ × ∇⊥φ − c

B0ωci

(
∂

∂t
+

c

B0
ẑ × ∇⊥φ · ∇⊥ + viz

∂

∂z

)
∇⊥φ + vizẑ, (2)

where vez (viz) is the parallel (to ẑ) component of the electron (ion) fluid velocity. The electron
and ion continuity equations are

∂nj

∂t
+ ∇ · (nj vj ) = 0, j = e, i. (3)

Inserting (1) and (2) into (3), letting nj = nj0 + nj1, where nj1 � nj0, and assuming
(c/B0)|ẑ × ∇⊥φ · ∇⊥| � vjz∂/∂z, we obtain

d

dt
ne1 +

c

B0
ẑ × ∇⊥φ · ∇⊥ne0 + ne0

∂

∂z
vez = 0, (4)
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and
d

dt
ni1 +

c

B0
ẑ × ∇⊥φ · ∇⊥ni0 + ni0

∂

∂z
viz − cni0

B0ωci

d

dt
∇2

⊥φ = 0, (5)

where d/dt = ∂/∂t + (c/B0)ẑ × ∇⊥φ · ∇⊥.
Subtracting (4) from (5), and imposing the quasi-neutrality approximation ne1 = ni1, we

have

∂

∂t
∇2

⊥φ +
c

B0

[
φ,∇2

⊥φ
]

+
δωci

ni0

∂(Zdnd0)

∂x

∂φ

∂y
+

ne0B0ωci

ni0c

∂vez

∂z
= 0, (6)

where the parallel component of the electron velocity perturbation vez is determined from

∂vez

∂t
+

c

B0
[φ, vez] = e

me

∂φ

∂z
. (7)

The parallel component of the ion velocity perturbation viz is neglected since viz � vez.
Furthermore, we have defined the Poisson bracket [a, b] = axby − aybx .

Two comments are in order. First, equation (6) with vez = 0 is just the Shukla–Varma
(SV) equation [13], which governs the nonlinear dynamics of finite frequency convective cell
modes in a nonuniform dusty magnetoplasma. Stationary vortex solutions of the SV equation
have been discussed in [13]. Second, in a uniform magnetoplasma, equations (6) and (7) are
the relevant equations governing the dynamics of three-dimensional convective cells [1].

For convenience, we rewrite equations (6) and (7) as

∂

∂t
∇2φ + d[φ,∇2φ] + a

∂φ

∂y
+ b

∂v

∂z
= 0, (8)

and
∂v

∂t
+ d[φ, v] = β

∂φ

∂z
, (9)

with v ≡ vez, a = δωci/ni0∂(Zdnd0)/∂x, b = ne0B0ωci/ni0c, d = c/B0, β = e/me.

3. Lie point symmetries

The Lie point symmetries of (8) and (9), having the form

σφ = Xφx + Yφy + Zφz + T φt − �, σv = Xvx + Yvy + Zvz + T vt − V, (10)

with X, Y,Z, T ,� and V being functions of the variables (x, y, z, t, φ, v), are the solutions
of the linearized equations (8) and (9), namely,

∂

∂t
∇2σφ + d[σφ,∇2φ] + d[φ,∇2σφ] + a

∂σφ

∂y
+ b

∂σv

∂z
= 0, (11)

and
∂σv

∂t
+ d[σφ, v] + d[φ, σv] = β

∂σφ

∂z
, (12)

which means that (8) and (9) are invariant under the transformations φ → φ + εσφ, v → v + εσv ,
with a small parameter ε.

Substituting (10) into (11) and (12), eliminating the quantities φxyy, vt and their higher
order derivatives by means of (8) and (9), and setting zero all the coefficients of the independent
terms of the polynomials of φ, v and their partial derivatives, we obtain an over-determined
set of equations for the unknown functions X, Y,Z, T ,� and V . Solving the determinant
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equations, we then obtain

X = −C1x + f, Y = −C1y + g, Z = C3, T = C1t + C2, (13)

� = −3C1φ +
1

d
ġx − 1

d
ḟ y +

1

β
ṗz +

a

2bdβ
ḟ z2 + h, V = −2C1v +

a

bd
ḟ z + p, (14)

where f, g, h, p are arbitrary functions of t, C1, C2, C3 are arbitrary constants, and the dot
over the function means its derivative with respect to time. The presence of these arbitrary
functions and constants leads to an infinite-dimensional Lie algebra of symmetries. A general
element of this algebra is written as

V
¯

= C1V
¯ 1 + C2V

¯ 2 + C3V
¯ 3 + V

¯ 4(f ) + V
¯ 5(g) + V

¯ 6(h) + V
¯ 7(p), (15)

where

V
¯ 1 = −x

∂

∂x
− y

∂

∂y
+ t

∂

∂t
− 3φ

∂

∂φ
− 2v

∂

∂v
,

V
¯ 2 = ∂

∂t
,

V
¯ 3 = ∂

∂z
,

V
¯ 4(f ) = f

∂

∂x
−

(
1

d
ḟ y − a

2bdβ
f̈ z2

)
∂

∂φ
+

a

bd
ḟ z

∂

∂v
,

V
¯ 5(g) = g

∂

∂y
+

1

d
ġx

∂

∂φ
,

V
¯ 6(h) = h

∂

∂φ
,

V
¯ 7(p) = 1

β
ṗz

∂

∂φ
+ p

∂

∂v
,

construct a basis for the vector space. The associated Lie algebra among these vector fields
becomes


V
¯ 1 V

¯ 2 V
¯ 3 V

¯ 4(f ) V
¯ 5(g) V

¯ 6(h) V
¯ 7(p)

V
¯ 1 0 −V

¯ 2 0 V
¯ 4(f + t ḟ ) V

¯ 5(g + t ġ) V
¯ 6(3h + t ḣ) V

¯ 7(2p + t ṗ)

V
¯ 2 0 0 V

¯ 4(ḟ ) V
¯ 5(ġ) V

¯ 6(ḣ) V
¯ 7(ṗ)

V
¯ 3 0 V

¯ 7

(
a
bd

ḟ
)

0 0 V
¯ 6

(
1
β
ṗ
)

V
¯ 4(f ) 0 V

¯ 6

(
1
β
(fg)′

)
0 0

V
¯ 5(g) 0 0 0

V
¯ 6(h) 0 0

V
¯ 7(p) 0




,

where the entry in the j th row and the kth column represents the commutator [v
¯j , v

¯k], and
{v
¯1, v

¯2, v
¯3}, {v¯1, v

¯4, v
¯5, v

¯6, v
¯7}, {v¯3, v

¯6, v
¯7} are some of the subalgebras.

Let us now consider a point transformation G : (x, y, z, t, φ, v) → (ξ, η, ζ, τ, U,W). By
using seven vector elements in (15), we have the corresponding seven one-parameter groups
of symmetries of (8) and (9) as

G1 : (x, y, z, t, φ, v) → (xe−ε, ye−ε, teε, φe−3ε, ve−2ε),

G2 : (x, y, z, t, φ, v) → (x, y, z, t + ε, φ, v),
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G3 : (x, y, z, t, φ, v) → (x, y, z + ε, t, φ, v),

G4 : (x, y, z, t, φ, v) →
(

x + εf, y, z, t, φ − ε

d
ḟ y +

aε

2bdβ
ḟ z2, v +

εa

bd
ḟ z

)
,

G5 : (x, y, z, t, φ, v) →
(
x, y + εg, z, t, φ +

ε

d
ġx, v

)
,

G6 : (x, y, z, t, φ, v) → (x, y, z, t, φ + εh, v),

G7 : (x, y, z, t, φ, v) →
(

x, y, z, t, φ +
ε

β
ṗz, v + εp

)
.

(16)

It is seen that G1 is a scaling for all variables with different ratios, G2,G3,G6 and G7 are
translations, and G4,G5 are Galilean boosts. Hence, if φ and v are solutions of (8) and (9), so
are then U(ξ, η, ζ, τ ) and W(ξ, η, ζ, τ ).

4. 2+1 similarity reductions

After determining the infinitesimal generators, the similarity variables can be found by solving
the characteristic equations

dx

X
= dy

Y
= dz

Z
= dt

T
= dφ

�
= dv

V
. (17)

Specifically, four types of similarity reduction solutions are possible.

(1) The first type of reductions. For the most general generator V
¯

, we obtain the first type of
similarity solutions

φ = U

(C1t + C2)3
+

ġ(C1t + C2) − C1g

d(C1t + C2)2
x +

C1f − ḟ (C1t + C2)

d(C1t + C2)2
y

+

(
aC2

1f

bdβ(C1t + C2)3
− C1aḟ

(C1t + C2)2bdβ
+

af̈

2(C1t + C2)2bdβ

)
z2

+

(
3C1af

bdβ(C1t + C2)3
− 2C1p

(C1t + C2)2β
+

2C2
1

β(C1t + C2)3

∫
p dt

− 2C2
1a

bdβ(C1t + C2)3

∫
f

C1t + C2
dt +

−aḟ + ṗbd(C1t + C2)

(C1t + C2)2ebd

)
z

+
(−C1bβg + a)f

bdβ(C1t + C2)3
− p

β(C1t + C2)2
− C1(2 ln(C1t + C2) − 3)

β(C1t + C2)3

∫
p dt

+
C1a(2 ln(C1t + C2) − 3)

bdβ(C1t + C2)3

∫
f

C1t + C2
dt +

2C1

d(C1t + C2)3

∫
gḟ dt

− 2C1a

bdβ(C1t + C2)3

∫
f ln(C1t + C2)

C1t + C2
dt − 2C1

(C1t + C2)3

∫
h(C1t + C2) dt

+
2C1

β(C1t + C2)3

∫
p ln(C1t + C2) dt +

h

C1t + C2
, (18)

v = W

(C1t + C2)2
+

( −aC1f

(C1t + C2)2bd
+

aḟ

(C1t + C2)bd

)
z +

p

C1t + C2

− 1

bd(C1t + C2)2

(
af + C1bd

∫
p dt −

∫
C1af

C1t + C2
dt

)
, (19)
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with U and W being similarity reduction functions with respect to the similarity variables

ξ = C1xt + C2x − f, η = C1yt + C2y − g, ζ = z − 1

C1
ln(C1t + C2). (20)

Here C1, C2, C3, f, g, h and p have been redefined for simplicity (which is also valid for the
following solutions). The similarity functions U and W satisfy the first type of similarity
reduction equations[(

C1ξ − d
∂U

∂η

)
∂

∂ξ
+

(
C1η + d

∂U

∂ξ

)
∂

∂η
− ∂

∂ζ
− C1

]

×
(

∂2U

∂ξ 2
+

∂2U

∂η2

)
+ a

∂U

∂η
+ b

∂W

∂ζ
= 0, (21)

C1η
∂W

∂η
+ C1ξ

∂W

∂ξ
− ∂W

∂ζ
− β

∂U

∂ζ
+ d

∂U

∂ξ

∂W

∂η
− d

∂U

∂η

∂W

∂ξ
− 2C1W = 0. (22)

(2) The second type of reductions. For C1 = 0, we have the similarity solution

φ = ġ

C2d
x − ḟ

C2d
y +

af̈

C2bdβ
z2 +

bdC2ṗ − aḟ

bdβC2
2

z +
af − bdC2p + bdβC2

2h

bdβC3
2

+ U, (23)

v = aḟ

C2bd
z +

p

C2
− f

C2
2bd

+ W, (24)

where U and W are similarity reduction functions with respect to the similarity variables

ξ = x − f

C2
, η = y − g

C2
, ζ = z − t

C2
. (25)

The second type of similarity reduction equations is[
dC2

∂U

∂ξ

∂

∂η
− dC2

∂U

∂η

∂

∂ξ
− ∂

∂ζ

](
∂2U

∂ξ 2
+

∂2U

∂η2

)
+ aC2

∂U

∂η
+ bC2

∂W

∂ζ
= 0, (26)

∂W

∂ζ
+ C2d

∂W

∂ξ

∂U

∂η
− C2d

∂W

∂η

∂U

∂ξ
+ βC2

∂U

∂ζ
= 0. (27)

(3) The third type of reductions. For C3 = 0, we have the similarity solution

φ = U

(C1t + C2)3
+

(
ġ

d(C1t + C2)
− C1g

d(C1t + C2)2

)
x +

(
C1f

d(C1t + C2)2

− ḟ

d(C1t + C2)

)
y +

a

bdβ

(
C2

1f

(C1t + C2)3
− C1ḟ

(C1t + C2)2
+

f̈

C1t + C2

)
z2

+

(
2C2

1p

e(C1t + C2)3
− 2C1ṗ

e(C1t + C2)2
+

p̈

e(C1t + C2)

)
z +

ḣ

C1t + C2

− 2C1h

(C1t + C2)2
− C1

d(C1t + C2)3

(
fg − 2

∫
(dC1h + ḟ g) dt

)
, (28)

v = W

(C1t + C2)2
+

a(C1t + C2)ḟ − C1f

bd(C1t + C2)2
z +

(C1t + C2)ṗ − C1p

(C1t + C2)2
, (29)

where U and W are similarity reduction functions with respect to the similarity variables

ξ = C1xt + C2x − f, η = C1yt + C2y − g, ζ = z. (30)
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The corresponding similarity reduction equations are[(
C1ξ − d

∂U

∂η

)
∂

∂ξ
+

(
C1η + d

∂U

∂ξ

)
∂

∂η
− C1

](
∂2U

∂ξ 2
+

∂2U

∂η2

)
+ a

∂U

∂η
− b

∂W

∂ζ
= 0,

(31)(
C1ξ − d

∂U

∂η

)
∂W

∂ξ
+

(
C1η + d

∂U

∂ξ

)
∂W

∂η
− β

∂U

∂ζ
− 2C1W = 0. (32)

(4) The fourth type of reductions. For C3 = C1 = 0, we have the similarity solution

φ = ġ

C2d
x − ḟ

C2d
y +

af̈

2bdβC2
z2 +

p̈

C2e
z +

h

C2
+ U, (33)

v = aḟ

bdC2
z +

ṗ

C2
+ W, (34)

where the similarity reduction functions U and W are with respect to the similarity variables

ξ = x − f

C2
, η = y − g

C2
, ζ = z, (35)

and satisfy the similarity reduction equations[
d

∂U

∂ξ

∂

∂η
− d

∂U

∂η

∂

∂ξ

](
∂2U

∂ξ 2
+

∂2U

∂η2

)
+ a

∂U

∂η
+ b

∂W

∂ζ
= 0, (36)

d
∂U

∂ξ

∂W

∂η
− d

∂U

∂η

∂W

∂ξ
− e

∂U

∂ζ
= 0. (37)

5. Some exact similarity solutions

It is seen that the (2+1)-dimensional similarity reduction equations are still very complicated,
and some exact solutions cannot be deduced easily. Therefore, we will apply here the
symmetry approach to the reduction equations in order to obtain (1+1)-dimensional similarity
reduction equations, which are easier to be solved. In this section, we only concentrate on the
two (2+1)-dimensional reduction equations (26)–(27) and (36)–(37). The other two types of
(2+1)-dimensional reduction equations (21)–(22) and (31)–(32), might be more complicated
due to their variable coefficients.

5.1. Solutions from the (2+1)-dimensional reduction equations (26)–(27)

By using the Lie symmetry approach, we obtain the generator of the reduction equations (26)
and (27)

V
¯

= B1
∂

∂ξ
+ B2

∂

∂η
+ B3

∂

∂U
+ B4

∂

∂W
, (38)

with arbitrary constants B1, B2, B3 and B4. The related similarity solutions are

U = B3η + P, W = B4η + Q, (39)

where B2 has been set to 1 without loss of generality, P and Q are the similarity reduction
functions with respect to the similarity variables X = ξ − B1η and ζ . The corresponding
(1+1)-dimensional similarity reduction equations are
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bC2
∂Q

∂ζ
− aC2B1

∂P

∂X
− dC2B3

(
1 + B2

1

)∂3P

∂X3
− (

1 + B2
1

) ∂3P

∂X2∂ζ
+ aC2B3 = 0, (40)

∂Q

∂ζ
− dC2B4

∂P

∂X
+ dC2B3

∂Q

∂X
+ βC2

∂P

∂ζ
= 0. (41)

Therefore, once a solution of the reduced equations (40) and (41) is obtained, an exact
similarity solution of the original systems (8) and (9) follows. However, it is still not an easy
matter to obtain a general solution of (40) and (41), but some special solutions are possible.
Here, we directly write down two types of solutions which have been transformed back to the
variables of the original system.

(a) The first type of exact solutions. If B4 = βB3C2 in (41), then the original systems (8) and
(9) may possess the following exact solution

φ = P1 +
ġ

dC2
x − ḟ − B3C2d

dC2
y +

af̈

2bdβC2
z2 − aḟ − bdC2ṗ

bdC2
2β

z

− p

C2
2β

+
af

bdβC3
2

+
h

C2
− B3g

C2
, (42)

v = − aB1P1

bdB3C2
+

a

bdC2
x +

aB1 − dbB4C2

bdC2
y +

a(ḟ − dB3C2)

bdC2
z

+
aB3

bC2
t +

p

C2
− 2af

bdC2
2

+
(aB1 − bdC2B4)g

bdC2
2

, (43)

where P1 ≡ P1(kx − kB1y − kdB3C2z + k(dB3C2t + B1g − f )/C2) is an arbitrary function
of the indicated argument, k, B1, B3 and C2 are arbitrary constants.

It is noted that the above exact solution might represent solitary waves, shock waves,
etc depending on the selections of the arbitrary function P1. In addition, the presence of
arbitrary time-dependent functions f, g, h and p implies the intrusion of the time-dependent
nonlinear shears and time-dependent background. Here, two sets of figures are plotted to show
the effects of the nonlinear periodic shears on the electrostatic potential φ and the parallel
electron velocity v. Figure 1 shows a possible solitary wave structure produced by choosing
P1 ∝ sech2(kx − kB1y − kdB3C2z + k(dB3C2t + B1g − f )/C2) and the time-dependent
functions h = 0, f, p ∝ cos(t), g ∝ sin(t). Figure 2 displays a possible shock-like structure
produced by choosing P1 ∝ tanh(kx − kB1y − kdB3C2z + k(dB3C2t + B1g − f )/C2), and
the time-dependent functions are fixed similar to figure 1.

It is clear from solutions (42) and (43) that the electrostatic potential φ has time-dependent
linear shears in the x and y directions, and a time-dependent nonlinear shear in the z direction,
while the parallel electron velocity v has constant linear shears in the x and y directions and a
time-dependent linear shear in the z direction. As manifested in figures 1 and 2, the electrostatic
potential φ in the x–z plane is much more influenced by the nonlinear time-dependent shear
than that in the other two planes where it shares similar structures, and the time-dependent
linear shear has a small effect on the electron velocity v.

(b) The second type of exact solutions. Without the condition B4 = βB3C2, we can obtain a
type of travelling periodic wave solutions

φ = A1 cos

[
A2

(
kx − kB1y − ωz +

ωt + kB1g − kf

C2

)
+ A3

]
+

ġ + kdA4C2

dC2
x

− kdA4B1C2 + ḟ − dB3C2

dC2
y +

af̈

2bdβC2
z2 − bdβωA4C

2
2 + aḟ − bdC2ṗ

bdβC2
2

z
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Figure 1. A schematic plot of the solitary wave with time-dependent shear at times (1) t = 0 for
the left column, (2) t = 2

3 π for the middle column, and (3) t = π
2 for the right column. The

figures on the top are about the electrostatic potential φ on the x–z plane, in the middle are about
φ on the x–y plane, at the bottom are about the parallel electron velocity v on the x–z plane.

+
A4ωt + h + (kA4B1 − B3)g

C2
−

(
kbdβA4C

2
2 − a

)
f

bdβC3
2

− p

βC2
2

, (44)

v = C2(dkB4 + ωβ)

kdB3C2 − ω

[
A4

(
kx − kB1y − ωz +

ωt + kB1g − kf

C2

)

+ A1 cos

[
A2

(
kx − kB1y − ωz +

ωt + kB1g − kf

C2

)
+ A3

]]

+ B4y +
aḟ

bdC2
z +

p − B4g

C2
− af

bdC2
2

, (45)

with

A4 = aB3(dkB3C2 − ω)

adk2C2B1B3 − akB1ω + bdkC2ωB4 + bω2βC2
, (46)

A2 = ±
√

C2(adC2k2B1B3 − akB1ω + bdkC2ωB4 + bC2ω2β)

(kdB3C2 − ω)2k2
(
B2

1 + 1
) , (47)

where f, g, h, p are arbitrary functions of t, k, ω, B1, B3, C2 and A3 are arbitrary constants.
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Figure 2. A schematic plot of the shock wave with time-dependent shear at times (1) t = 0 for the
left column, (2) t = 2

3 π for the middle column, and (3) t = π
2 for the right column. The figures

on the top are about the electrostatic potential φ on the x–z plane, in the middle are about φ on the
x–y plane, at the bottom are about the parallel electron velocity v on the x–z plane.

Figure 3 is plotted for this solution with similar selections of the time-dependent functions,
namely, h = 0, f, p ∝ cos(t), g ∝ sin(t). It is observed from solutions (44)–(45) and
figure 3 that, compared to the first type of solutions, the time-dependent linear and nonlinear
shears appear in a similar way in this solution, and have similar effects on the electrostatic
potential φ and the parallel electron velocity v.

5.2. Solutions from the (2+1)-dimensional reduction equations (36)–(37)

The vector field of the reduction equations (36) and (37) reads

V
¯

= 1

3
(B2ξ + 3B5)

∂

∂ξ
+

1

3
(B2η + 3B1)

∂

∂η
+ (B2U + B3)

∂

∂U
+

1

3
(2B2W + 3B4)

∂

∂W
, (48)

with arbitrary constants B1, B2, B3, B4 and B5. In this case, we can have two types of similarity
solutions.

(a) The first type of exact solutions. For the most general generator (48), we can have the first
type of similarity solutions

U = −B3 + (η + 3B1)
3P, W = − 3

2B4 + (η + 3B1)
2Q, (49)

where B2 has been set to 1 without loss of generality, P and Q are similarity reduction
functions of the similarity variables X = (ξ + 3B5)/(η + 3B1) and ζ , and the corresponding
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Figure 3. A schematic plot of the periodic wave with time-dependent shear at times (1) t = 0
for the left column, (2) t = 2

3 π for the middle column, and (3) t = π
2 for the right column. The

figures on the top are about the electrostatic potential φ on the x–z plane, in the middle are about
φ on the x–y plane, at the bottom are about the parallel electron velocity v on the x–z plane.

(1+1)-dimensional similarity reduction equations are

d(1 + X2)

(
3P

∂3P

∂X3
− ∂P

∂X

∂2P

∂X2

)
− 6dX

∂2P

∂X2
+ 4dX

(
∂P

∂X

)2

+ aX
∂P

∂X
− 3aP − b

∂Q

∂ζ
= 0, (50)

β
∂P

∂ζ
+ 3dP

∂Q

∂X
− 2dQ

∂P

∂X
= 0. (51)

To obtain a general solution of the above (1+1)-dimensional similarity reduction equations
is still very difficult. Below is a special polynomial type solution, which has been transformed
back to the variables of the original system, read

φ =
(

y3 − 3(g − 3B1C2)

C2
y2 +

3(g − 3B1C2)
2

C2
2

y − (g − 3B1C2)
3

C3
2

)
(A1X

3 − 3A2X
2

+ A3X + A2) +
ġ

C2d
x − ḟ

C2d
y +

af̈

2C2bdβ
z2 +

p̈

C2β
z − B3 +

h

C2
, (52)

v = A4

(
y2 − 2(g − 3B1C2)

C2
y +

(g − 3B1C2)
2

C2
2

)
(A1X

3 − 3A2X
2 + A3X + A2)

2
3

+
aḟ

C2bd
z +

ṗ

C2
− 3

2
B4, (53)
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where

X = C2x − f + 3B5C2

C2y − g + 3B1C2
, (54)

f, g, h and p are arbitrary functions of t, A1, A2, A3, A4, C2, B1, B3 and B5 are arbitrary
constants.

(b) The second type of exact solutions. For B2 = 0, we obtain the second type of similarity
solutions

U = B3

B1
η + P, W = B4

B1
η + Q, (55)

where the similarity reduction functions P and Q, which are functions of the similarity variables
X = ξ − (B5/B1)η and ζ , satisfy the following (1+1)-dimensional similarity reduction
equations:

bB3
1
∂Q

∂ζ
− dB3

(
B2

1 + B2
5

)∂3P

∂X3
− aB2

1B5
∂P

∂X
+ aB2

1B3 = 0, (56)

dB4
∂P

∂X
− dB3

∂Q

∂X
− eB1

∂P

∂ζ
= 0. (57)

By introducing a travelling wave ansatz, the above reduced equations admit a general
exact solution of (8) and (9) in the form of the following periodic wave solutions:

φ = A1 cos

[
kA2

(
x − B5

B1
y +

B5g − B1f

B1C2
− ω

k
z

)
+ A3

]
+

ġ + dkA0C2

dC2
x

− B1ḟ − dB3C2 + kdA0C2B5

dC2B1
y +

af̈

2bdC2β
z2 +

p̈ − ωβA0C2

C2β
z

+
(kA0B5 − B3)g

B1C2
− kA0f − h

C2
, (58)

v = dkB4 + ωβB1

kdB3

[
kA0

(
x − B5

B1
y +

B5g − B1f

B1C2
− ω

k
z

)

+ A1 cos

[
kA2

(
x − B5

B1
y +

B5g − B1f

B1C2
− ω

k
z

)
+ A3

]]

+
B4

B1
y +

aḟ

bdC2
z +

ṗ

C2
− B4g

B1C2
, (59)

where

A0 = akdB2
3

bω2βB2
1 + bdkωB4B1 + adk2B3B5

, (60)

A2 = ±
√

B2
1

(
bω2βB2

1 + bdkωB4B1 + adk2B3B5
)

d2B2
3k4

(
B2

1 + B2
5

) , (61)

f, g, h and p are arbitrary functions of t, k, B1, B3, B4, B5, C2 and ω are arbitrary constants.
It is noted that solutions (58) and (59) have forms similar to those periodic solutions (44)

and (45), except with different coefficients. Hence, the time-dependent linear and nonlinear
shears have a similar effect on φ and v, as shown in figure 3.
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6. Summary and discussion

In summary, we have performed the Lie symmetry analysis of the coupled (3+1)-dimensional
equations, which govern the dynamics of nonlinearly interacting low-frequency electrostatic
waves in a nonuniform dusty magnetoplasma, and found their algebraic structures. In the
correspondence of the generators, the system is reduced to (2+1) dimensions. Using the Lie
point symmetry approach again, two of the (2+1)-dimensional systems are reduced further to
some different types of (1+1)-dimensional systems. Four types of exact similarity solutions
are obtained by solving the reduced (1+1)-dimensional systems.

There are three interesting features of our solutions. First, special type of solutions,
given by (42) and (43), have different wave structures, such as solitary, shock, and periodic
waves, depending on the arbitrary function P1. Second, the solutions demonstrate that some
types of localized waves can travel with arbitrary speed due to some arbitrary constants and
time-dependent functions. Furthermore, the four exact solutions show that the electrostatic
potential φ may not have only constant linear shears, but also time-dependent nonlinear shears.
Figures 1–3 reveal that the linear and nonlinear shears have a larger effect on the electrostatic
potential φ than on the parallel electron velocity v.

It is noted that some stationary solutions can be obtained for the (3+1)-dimensional
governing system (8) and (9) by introducing a transformation of the coordinates [1].
Specifically, assuming a new coordinate Y = y + αz − ut , where α represents the angle
between the wavefront normal and the x–y plane, and u is the speed of propagation, the
original system of equations are greatly simplified. From equation (9), a simple relation
between the parallel electron velocity v and the electrostatic potential φ turns out to be

v = −αβ

u
φ. (62)

Due to the simple relation (62), equation (8) in the stationary frame can be written in the form[
ud

∂φ

∂Y

∂

∂x
−

(
ud

∂φ

∂x
− u2

)
∂

∂Y

] (
∂2φ

∂x2
+

∂2φ

∂Y 2

)
− (ua − bβα2)

∂φ

∂Y
= 0. (63)

Equation (63) reduces to the Euler equation when

u = bβα2

a
. (64)

The Lie symmetries and similarity solutions of a (2+1)-dimensional Euler and generalized
Euler equations have been studied in [17–19]. Therefore, the known solutions of the Euler and
generalized Euler equations can be used to construct solutions of our equation (63) satisfying
condition (64). We present two classes of analytical solutions. The first one is related to the
symmetry generator

V = Y
∂

∂x
− x

∂

∂Y
+

(
C1φ − α2bβ

ad
(C1x + Y )

)
∂

∂φ
, (65)

and has the form

φ = bα2β

ad
x + exp

[
C1 arctan

(
Y

x

)] [
m2J

(
C1i, 2m1

√
x2 + Y 2

)
+ m3N

(
C1i, 2m1

√
x2 + Y 2

)]
, (66)

where J and N are the Bessel functions of the first and second kinds, respectively, m1,m2,m3

and C1 are arbitrary constants. For nonzero C1, (66) is a complex solution. Figure 4 shows a
schematic profile of the real part of this solution in the new x–Y coordinates.
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Figure 4. A schematic profile of the real part of solution (66).
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Figure 5. Schematic profiles of a dromion solution (a), and a ring solitary wave solution (b).

If C1 = 0 in (65), we obtain the second interesting solution

φ = bα2β

ad
x + F(x2 + Y 2), (67)

where F is an arbitrary similarity reduction function of the indicated argument that is
responsible for many interesting nonlinear coherent structures. Specifically, (67) can describe
dromion solutions [20] and ring solitary waves [19, 21], when F ∝ sech(x2 + Y 2) and
∝ sech(x2 + Y 2 − 9), respectively. The dromion and ring solutions are shown in figure 5.

It is seen that solutions (66) and (67) come from the rotation transformation of the reduced
system (63), which is not allowed for the original system of equations. There are two distinct
features of these solutions in contrast to those presented in section 5. First, only constant
linear shear in the x direction enters solutions (66) and (67). Second, due to relation (62),
the electrostatic potential and the parallel electron velocity have similar structures and similar
linear shears.
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